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Given a configuration of points, a procedure for constructing the corresponding Voronoi 
diagram is given. The procedure is exact for molecules in the bulk. Polyhedra of surface 
molecules can be either eliminated or included using a periodic boundary condition. The 
construction is of interest in astronomy, biology, chemistry, materials science, as well 
as in physics (with points representing atoms, molecules, ions, etc.). The present method is 
more efficient than other procedures described in the literature. 

Consider a physical system consisting of a number of distinct entities. Typically, 
the entities are molecules, but they can also be ions, atoms, polymer segments, 
radicals, and so on. We know that equilibrium and other properties of the system 
depend on spatial distribution of the entities, and the question is how to represent 
this distribution conveniently? A method known for a long time, but which has 
recently been strongly increasing in popularity, consists in dividing the three-dimen- 
sional space between entities. Each entity “owns” a certain portion of the space in 
the shape of a polyhedron. Thus, each physical entity is principally characterized by 
the location of its geometrical center (to be shortly called center throughout this 
paper) and by the size and shape of the surrounding polyhedron. 

The polyhedra in question were first defined by mathematicians [I, 21 and then 
“rediscovered” several times by physicists [3,4]. Consequently, they are variously 
known as Dirichlet [I] regions, Voronoi [2] polyhedra, Wigner-Seitz [3] cells, or 
domains [4]. The name Wigner-Seitz cells seems to be popular among solid state 
physicists, who use this approach extensively [5]. Some time ago [6] we decided to 
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use the name Voronoi polyhedra; we continue with the same terminology, apparently 
used by most mathematicians [7]. 

Allotting spaces to molecules is clearly of interest to molecular physicists, 
biochemists, materials scientists, and physical chemists. Construction of Voronoi 
polyhedra is also of interst to astrophysicists, in connection with fragmentation of 
celestial bodies [S]. Our own interest in the polyhedra is related to a theory of 
liquids and amorphous solids based on the theory of information. [6, 91 

Although procedures for the construction of the polyhedra were developed by 
several authors [8, 10-141, they were not satisfactory for our purposes. The procedures 
of Kiang [S], Finney [IO], Mackay [ll], and Richards [12] seemed not efficient 
enough; there were not enough details in the paper of Rahman [I 31; and Shamos and 
Hoey [14a] treated two dimensions only. In these circumstances, we developed a new 
method, which is described in the present paper. 

In Section 2 we define the basic notions. In Section 3 we show how to construct 
the Voronoi diagram. Once proposed, our method is compared in Section 4 with 
earlier approaches. Section 5 contains some algebraic details pertinent for the users 
of our method. In the final section we discuss briefly the present and potential applica- 
tions of the method; there is little point in the discussing these applications in the 
present paper in any detail, since the extensive work already done, by physicists in 
particular, proves clearly the usefulness of Voronoi polyhedra. 

2. BASE DEFINITIONS 

Consider a set of centers P, , P, ,..., P, in L-dimensional Euclidean space E. The 
Voronoi polyhedron Vi around a given center Pi, is the set of points in E closer to 
Pi than to any P, : more formally, 

V, = {X E E : d(x, Pi) < d(x, Pj),,j = I, 2 ,..., n}, (1) 

where d denotes distance. Thus, the polyhedra are intersections of half-spaces; they 
are convex but not necessarily bounded. The polyhedra partition E in a unique way. 
The set of Voronoi polyhedra corresponding to a given configuration of centers is 
called the Voronoi diagram. 

For obvious physical reasons we consider mainly the case L = 3. Given a center Pi 
and its neighbor Pj , the line PiPj is cut perpendicularly at its midpoint yij by the 
plane hij . We call Hij the half-space generated by hii that consists of the subset of E 
on the same side of h<j as P, ; that is, 

vi = n H<? . (2) 

Vi is bounded by faces, with each facehj belonging to a distinct plane hij . Each face is 
characterized by listing its vertices and edges in cyclic order. 
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It is pertinent to distinguish various possible kinds of neighbors of Pi . We define 
the following classes of neighbors: 

(i) direct neighbors: if yii belongs to Vi , then P, is a direct neighbor (these are 
the full neighbors of Meijering [ 151); 

(ii) indirect neighbors: if a subset of hi9 is a face of Vi but yij does not belong to 
vi, then Pj is an indirect neighbor; or Pj is an indirect neighbor if& n yii = O; 

(iii) degenerate neighbors: if the intersection of hij and Vi is just a vertex or an 
edge, then Pj is a degenerate neighbor; 

(iv) quasi-direct neighbors: if Pj is a direct neighbor or if Pj would be a direct 
neighbor in the absence of all indirect neighbors, then Pj is a quasi-direct neighbor 
OfPi. 

Clearly, all direct neighbors are also quasi-direct. Examples of neighbors represent- 
ing classes defined above are shown in Fig. 1 in two dimensions; extension to three 
dimensions is obvious. The quasi-direct neighbors generate a direct polyhedron D, 
in the same way that direct and indirect neighbors generate V. Clearly 

Vi C Di 3 for each i. (3) 

DIRECT 0 DEGENERATE 
QUASI DIRECT S CENTERS 
INDIRECT . MID POINTS 
DELAUNAY # INTERIOR OF POLYHEDRON 

FIG. 1. Example of various classes of neighbors of a Voronoi polygon, 
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We define the geometric coordination number fi as the number of nondegenerate 
direct or indirect neighbors of Pi . As stressed by one of us [ 161, the number fi has 
to be distinguished from the structural coordination number zi . The latter is defined in 
terms of the binary radial distribution function g(R), that is, in terms of the probability 
of finding another molecule at a distance R from a given molecule. The average value 
off for random models seems to be = 15 [ 111, but Voronoi polyhedra with f = 20 
have been constructed [ 17 1, and arbitrarily high values off are possible. By contrast, if 
only appropriate integration limits are used in the evaluation of Z, the highest value 
of z is 12 in crystals and I 1 in liquids [ 161. 

We embed Pi in a large “boundary” cube Ci , where the closest face of Ci to Pi is 
relatively far away from the farthest quasi-direct neighbor of Pi . (Except for dealing 
with surface phenomena, it would be convenient to use a single cube C for the whole 
system.) If a face of Ci cuts Di , we call Di virtually unbounded. A virtually unbounded 
polyhedron may be either bounded or unbounded. The appearance of virtually 
unbounded polyhedra is intimately related to surface effects. Therefore, detection of 
the presence of these polyhedra is important. Our method pinpoints them, and the 
corresponding V, are not constructed. We believe that this mathematical minus is 
actually a physical plus in relating the Voronoi diagram to real physical systems. 

It is worth noting that Ci can be very large. Extremely large Di , while mathematical- 
ly possible, simply do not occur in Voronoi diagrams representing the interior of 
systems of interest in astronomy, biology, chemistry, or physics. For values of DI 
of realistic relative dimensions with respect to Ci , the size of Ci has little if any effect 
on the work of constructing the Voronoi diagram. 

We also have the option of using a periodic boundary condition. This can be done as 
follows. Put the given configuration of points in a box. Now put this box in the center 
of a stack of congruent boxes, each containing the same configuration of points as the 
original. For each point in the center box, and only these, Voronoi polyhedra are 
constructed taking account of all points in all boxes. By definition of the periodic 
boundary condition, the resulting collection of Voronoi polyhedra constitutes the 
Voronoi diagram. When this option is taken, all Di in the original box are automatically 
bounded, and a boundary cube Ci is not needed. 

3. CONSTRUCTION OF THE POLYHEDRA 

There seems to be a growing consensus among users of geometry that many 
geometrical problems have to be revisited and considered from the point of view of 
computing facilities now available. This is due to the fact that geometry developed 
and flourished in a period when fast algorithms were of little if any importance. This is 
also our experience with the Voronoi polyhedra. In spite of many applications of the 
polyhedra by physicists and biologists, and despite the work of mathematicians, it 
appears that certain properties of the polyhedra were overlooked. In the present 
section we discuss these properties of the polyhedra which we found useful in the 
quest for an efficient procedure of constructing them. 
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We begin with a simple observation: On the average, direct polyhedra D have 
simpler shapes, that is, fewer faces, than Voronoi polyhedra V. This and relation (3) 
motivate our key idea: begin by constructing the polyhedron D, and only then proceed 
towards V. Given a center Pi and its bounded direct polyhedron Di , we can circum- 
scribe a sphere of diameter di around Di (even when not explicitly stated, we use 
squared distances to avoid calculating square roots). Then any point more than di 
away from Pi cannot be a neighbor; this simple criterion eliminates most of the candi- 
dates for indirect neighbors. Those which are not eliminated serve to obtain Vi from 
Di ; vertices, edges, and sometimes entire faces of Di are cut off by planes generated 
by indirect neighbors. Note that by definition di is twice the distance from Pi to the 
farthest vertex of Di . 

In many if not most geometrical problems one begins with locating vertices, then 
joins appropriate pairs of vertices by edges, and finally constructs faces or planes. 
Studies of random models [IO, 11, 131 indicate that the average number of edges per 
face is ~5. In constructing both Di and Vi we chose to find first the respective faces, 
from these to find the edges, and then finally to find the vertices. A careful analysis 
of the problem (cf. Section 4 and the end of Section 5) indicates that any other 
order would be much less efkient. A computer procedure called FACFIN for finding 

TABLE I 

FACFIN 

1. it1 

2. Sort the squared distances d(Pi , yij) in increasing order. Let the indices of the sorted list be [l], 
[2] ,..., [n - 1 J, in that order. 

3. fi +{Ulf 
4.3.‘2 
5. If yrj] is in H,, for all k in F, , set fi +- Fi U (PI}. 
6. Ifj=n-lI,goto7.Else,j+j+1andgoto5. 

7. Ifi=n,STOP.Else,i+i+ landgoto2. 

Comment: A preliminary test for unbounded polyhedra can he made at step 5 : If jeFi and 
j- Ci, set flag. 

faces of the direct polyhedra is shown in Table I. We devised this procedure with the 
objective of satisfying: 

LEMMA 1. FACFIN terminates with Ff containing exactly the indices of the faces 
ofDi. 

Proof. We use induction. Clearly [l] is the index of a face. Assume that the algo- 
rithm is correct up to and includingj - I. If y[,l is in Hi, for all m in Fi , then yrjl is in 
Di because it cannot be cut off by a plane generated by a quasidirect neighbor, since 
we consider the planes in the order specified in step 2. On the other hand, if yff is not 
in Hi, for some m in Fi, it is not a quasi-direct neighbor by definition. 



86 BROSTOW, DUSSAULT, AND FOX 

As already noted, one checks for intersections of Di with the boundary cube Cj . 
If there are nonempty such intersections, Di is eliminated as virtually unbounded. If 
Di remains, di is computed. A procedure which constructs and checks direct polyhedra 
called DIRPOL is shown in Table IT. Given Di , one finds all indirect neighbors and 
proceeds toward Vi . A procedure which produces Vi called VORPOL is shown in 
Table III. Each candidate face for Vi is considered just once. The procedure is 

TABLE I1 

DIRPOL 

2. With the set of edges associated with fi. denoted by Ai. and analogously for the vertices So, 
compute: Ai = IJJ Aif, and S, = lJ1 Sij . 

3. Given faces tit of Ci, sort the distances d(P<, QJ in increasing order. Sort outer half-spaces C,, , 
which contain each the respective tit but not Pz , in the same order. 

4. t+-1 

5. If Cit n Si # 4, set flag. (Comment: Di is virtually unbounded). 

6. If t = 6, go to 7; else t +-t + 1 and go to 5. 

7. Compute di . 

8. If i = n, STOP. Else, i +- i + 1 and go to 2. 

TABLE III 

VORPOL 

1. icl 

2. Number the faces of D, as 1,2 ,..., fd. For every center within d, of Pi , construct its hi, . Number 
the new candidate facesfd + l,..., r, say. 

3.j+f,+l, Vi+-Di. 
Comment: Fi , Ai , Aij , Si , and Sij are initialized to the values produced by FACFIN and DIRPOL 
except that Fi is the set of faces of Di , not just their indices. 

4. If hij cuts off one or more vertices of Si : 

(a) V, + V, n Hij . (Comment: iffik remains but ylk is cut off, then& becomes indirect.) 

(b) Ft -h, u Vi n Hii) 
(c) Ai +- Aif U (Ai n Hij) 
(d) Si c So u (Si n HiI) 

5.Ifj=f,fr,goto6;else,j+-j+landgoto4. 

6. If i = n, STOP; else, i +- i + 1 and go to 2. 

initiated with a list of candidate faces and this list does not grow. Hence, the procedure 
terminates when the initial list is exhausted. At this point, the vertices, edges, and 
faces of Vi are exactly those in the respective lists of candidate vertices, edges and 
faces. Using DIRPOL and VORPOL, it is easy to prove: 
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PROPOSITION 1. If Di is virtually unbounded, aflag is set. Otherwise, V, is constructed 
exactly. 

Since efficiency as well as exactness is sought, we do not construct each polyhedron 
in the Voronoi diagram from scratch. Results from the polyhedra already constructed 
are used, provided that there is sufficient computer memory to access this information 
quickly. Of course, if there is not enough high-speed memory available in a given 
computer, each face can be computed twice, once for each polyhedron involved. 
Observe that if Pj is a neighbor of Pi, then Pi is a neighbor of Pi. This also holds 
for any qualification of a neighbor such as direct, indirect or degenerate. Perhaps 
less obvious, we have: 

LEMMA 2. For any face J;j , each vertex of A$ is a vertex of both polyhedra Vi and 
Vj . Thus, fij = fji and its edges and vertices have to be calculated just once. 

ProoJ Suppose that x is a vertex of J;:j but not ofjji . On the plane hij , draw a 
circle of radius E around X. For sufficiently small positive E, some points in this circle 
are in Vi and some are not; simultaneously, either every point in the circle is in Vj 
or none are. However, every point in hii (particularly in the circle) is equidistant 
from Pi and Pj . Hence, all such points are in both Vi and Vj , or in neither. Combining 
our remarks, we have a contradiction. 

4. RELATIVE EFFICIENCY 

The overall work of step 2 of FACFIN is O(nz log n), using HEAPSORT (cf., 
e.g., Knuth [lS pp. 145-1491). The work for step 5 is at worst O(n[l Fl j + 1 F, 1 + 
. . . + 1 Fn I]). As most planes will probably be eliminated well before all m in I;i are 
checked, the implicit proportionality constant should be small. 

Suppose that each Vi has at most k faces and that the number of centers less than 
d, away from Pi is O(k) or less. Once Di is found, the work to construct Vi is O(k3) or 
less. Thus, except for the face-finder routine (FACFIN), the overall work is at most 
O(k3n). As noted in Section 2, large values off, even if possible in principle, rarely 
occur in practice. Therefore, k is generally significantly less than n. If k does not grow 
with n, for large n the dominant term for our procedure is O(n2 log n). 

In contrast to our method, Finney’s algorithm [lo] is O(n4). He uses the fact that 
each vertex of the diagram is equidistant from four (noncoplanar) centers. Thus, he 
solves (4”) systems of equations. At first sight, each system consists of four simul- 
taneous quadratic equations. However, these can be reduced to three simultaneous 
linear equations. Finney indicates a heuristic modification of his method where 
candidate neighbors more than a certain distance away from a given center are not 
considered. This cuts down the work significantly, but it seems difficult to choose an 
appropriate distance a priori. Our boundary cube is also rather arbitrary. But, as 
already mentioned in Section 2, the speed of our algorithm is normally not sensitive 
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to the size of the cube. On the other hand, it appears that the speed of Finney’s 
algorithm is sensitive to the size of his boundary sphere. 

As O(n4) is slow for n in the hundreds and hardly worth using for n in the thousands, 
Finney’s introduction of a boundary sphere may be a practical necessity. It appears that 
any apriori choice of sphere radius could require O(n*) time in the worst case-where 
all centers are in a given sphere. On the other hand, if the spheres are chosen ex post, 
so that only the k, say, closest centers are inside each sphere, then O(nz log n) time is 
required to construct the (n)sphere radii and O(k3n) time to construct the (n)polyhedra 
in the Voronoi diagram. These “best” bounds for Finney’s procedure are comparable 
to the time complexity of our program, which searches for neighbors in a general 
way. We could of course limit our search in a way similar to Finney’s, and thus make 
our program run still faster than it does now. A “self-checking” procedure for choosing 
sphere radii can, perhaps, be justified on ad hoc physical grounds, but neither indica- 
tions on how to do self-checking nor any criterion whatsoever for limiting the search 
for neighbors can be found in the published literature. 

Mackay [l l] uses essentially the same method as Finney. He chooses boundary 
sphere radii a priori 111, p. 226, step 11. No criterion for prescribing the radii is 
given. If only crystal lattices are considered, such a criterion can be easily formulated. 
Mackay insists, however, and we agree with him entirely, that Voronoi polyhedra 
ought to be used to study both crystalline and noncrystalline arrangements of atoms. 

Richards [IZ] finds the Voronoi diagram with a method similar to ours, except that 
he does not introduce the direct polyhedron. Instead, he uses a “large” boundary 
tetrahedron to eliminate candidate neighbors [12, p. 5, paragraph (c)l. He does not 
indicate a method for choosing the size of this tetrahedron. If this tetrahedron were 
truly large, his algorithm would be slow. 

An approximate method consists in putting a grid over the space, associating a small 
cube to each grid point, and associating each grid point with the closest center. This 
was done, for instance, by Kiang [8] who had 100 randomly distributed centers in a 
cube containing 203 lattice points. Such calculations can be used to obtain qualitative 
information only; Kiang was not interested in faces, edges, etc., but in the distribution 
of the volumes of the polyhedra in the Voronoi diagram. Any attempt to increase the 
accuracy of the method involves an increase in the number of lattice points, and 
therefore a dramatic loss in efficiency. 

A lower bound, to within a constant factor, on the work required by any exact 
algorithm is the sum of numbers of faces, edges, and vertices in the diagram. Call this 
sum s(n). For planar problems, Shamos [14] shows that s(n) = O(n) in the worst 
case by relating the Voronoi diagram to a planar graph. The worst case for 
three dimensions is not known. For two dimensions, Shamos shows that O(nlogn) 
is a tight lower bound on the work to construct the diagram. He gives a clever algo- 
rithm for constructing planar Voronoi diagrams. The three dimensional analog would 
be to partition E into cubes, construct the Voronoi polyhedra corresponding only to 
the centers in the respective cubes, and then recursively merge these polyhedra to 
obtain a correct overall diagram. If merging two diagrams takes time O(u(n)), then 
the overall time required is O(u(n) log n). Clearly u(n)) > O(s(n)) in the worst case. 
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A three-dimensional merge procedure with u(11) < O(rz2) would lead to an algorithm 
asymptotically faster than ours. Such a procedure has not been found. If it exists, 
it is surely complex and involves much overhead. It is not clear a priori that it would be 
efficient for practical values of n. 

As mentioned in the Introduction, Rahman [13] also generated Voronoi polyhedra 
to study structures of liquid phases. His configuration of centers was generated by the 
method of molecular dynamics. It is impossible to judge the efficiency of his method, 
since no details about how he constructed the polyhedra are given. 

5. ALGEBRAIC DETAILS 

For completeness, we indicate how to interpret our geometrical constructions in 
terms of standard solid analytic geometry. A plane in 3-space has the form 

where 

h(x) = b, (4) 

h(x) = al& + 4x3 + a3x3 . (5) 

Points c and d are on the same side of this plane if and only if h(c) and h(d) < b or 
,- h(c) and h(d) > b. Obviously, point e is on ;he plane if and -only iih(e) 

Consider two (nonparallel) planes: 
b. 

~xl + ai2x2 + ai3x3 = bi , (5’) 

ajlxl + aj2x2 + ajsx3 = bi . (5”) 

Define A, B, C by the determinant 

(6) 

Suppose that the point (k, , k2 , k3) is on the line formed by the intersection of these 
planes. Then 

B(x, - k,) = 4x2 - k,), (7’) 

C(x, - k,) = A(x3 - k3) (7”) 

determine this line. Cyclic permutation of parameters A, B, and C, along with the 
indices 1,2, and 3 can be made to avoid zero denominators in subsequent equations. 
To determine a suitable point (k, , k2 , k3) easily, note that at least one of the planes 

x, = 0, x2 = 0, x3 = 0, (8) 
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must intersect both the given planes. For example, suppose x, = 0 works. Then 
k3 = 0 and (k, , k,) is the solution to the system 

UilXl +i- U&X, = bi ) (9’) 

QjlXl + QjzXz = bj 2 (9”) 

which is easily solved by the usual method of determinants, with the value of C 
calculated only once. 

For a given face i, varying j gives all the candidate edges of this face. Use primes to 
denote quantities associated with the second candidate edge, and put 01 = A/B and 
LX’ = A’/B’. If a = 0~’ (for every cyclic permutation of A, B, C along with the indices 
1, 2, and 3), the two edges are parallel; otherwise, we have 

Xl = &b - M + k,? (10) 

x2 = (cdc, - OAk; + k, - k;)/(a - a'), (10') 

x3 == C(x, - /?,)/A + k, , (lo”) 

from which we get (in order) x2 , x1 , x8. The pairwise intersections of these candidate 
edges give the candidate vertices. The real edges and vertices are selected from these 
candidates using cutoff criteria discussed in Section 3. If we had tried to find the 
candidate vertices on a given face directly, we would have had to solve &‘) systems 
of three simultaneous equations. Finding the edges first is also an 0((i)) scheme, but 
the proportionality constant is smaller. 

6. SOME CONCLUDING REMARKS 

Throughout this paper we have talked about individual physical entities represented 
by the Voronoi polyhedra. We know that most molecules are polyatomic, but this 
by no means prevents the use of the present method. Molecules of chemical com- 
pounds may be represented by graphs, and such graphs are directly useful for pre- 
dicting thermodynamic properties of liquid phases [19, 201. Atoms (or groups of 
atoms, or polymeric segments) may be represented by graph points, and these points 
may serve as centers of the Voronoi polyhedra. Thus, it is only necessary to indicate 
connectedness between the centers, e.g., in a way discussed more in detail in an earlier 
paper [6]. Physical entities of dperent size can be treated also. A reliable even if 
approximate procedure, aimed at dealing with atoms in protein molecules, was 
proposed by Richards [12]. The dividing planes for covalent bonds are drawn perpen- 
dicular to the interatomic vector PiPi and positioned so as to divide P,Pj in proportion 
to the appropriate covalent radii. Clearly each such plane is an analog of the plane h,, 
as defined in Section 2, except that in general it does not include the midpoint yij . 
For a pair of atoms which are not bonded Richards uses a similar procedure, but 
this time the van der Waals radii of atoms determine the position of the dividing plane 
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on the P,Pj Iine. Richards admits that in his method certain regions of space may not 
be assigned to any atom. Criticizing this, Mackay [21] suggests an alternative 
(Voronoi-like) diagram. 

Solid state physicists use the Voronoi polyhedra mostly to describe crystalline 
materials [5], but the polyhedra are clearly even more useful for dealing with irregular 
structures. Bernal [22] developed a dense random packing (DRP) model of liquid 
phases. The model was subsequently translated [lo] into the language of the Voronoi 
diagrams. It was applied also to amorphous solids [23-261. The Voronoi polyhedra 
used to describe amorphous semiconductors [23-251 are fairly complex and have 
relatively large values off [24], while those used to represent glassy metals are some- 
what simpler [26]. Reviewing various approaches to amorphous structures, Takayama 
1261 stresses attractiveness of the DRP model. 

As already mentioned, our main objective is to pursue the information theory 
approach to liquid and amorphous solid phases. It is possible to obtain expressions 
for equilibrium properties such as pressure or configurational energy (cf., e.g., [6]), 
but they all contain a geometric parameter p. This parameter decreases with the 
structural coordination number z [9], but the general p tf z correspondence is 
unknown. Thus, given the procedure for constructing the Voronoi diagram, our first 
task consisted in elucidating the p w z dependence [27]. The next stage is that of 
studying relations between z and the number of facesJ: For crystalline materials, the 
configurations of centers are simple mixtures of regular lattices. For liquids and 
amorphous solids, the configurations are generated by a Monte Carlo procedure 
according to a probability law that seems physically reasonable in terms of inter- 
molecular potential u(R). 

The computer program VORDTG which constructs the Voronoi diagram is 
available from us on request. 
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